
Integrating Lightning
Into Bitrefill

Justin Camarena

Chaincode Lightning Residency 2018

Bitrefill

• Originally a prepaid phone credits seller
available in 107+ countries

• We were bitcoin only for many years founded in
2014

• We have recently expanded into other products
such as gift cards

The Path to Lightning
Integration

• Originally joined Bitrefill as an intern a little
more than a year to remove Bitrefill’s
dependence on Third-party bitcoin APIs

• Depend on our own bitcoind node as our
source of truth for bitcoin orders

• Move refunds away from Copay
• Similar to btcpay server

Scaling Issues

• Merchants were hit quite hard due to fees spikes and
backlogs

• Bitrefill was no exception especially due to having many low
value products in some countries

• Centralized Approach: Accounts, zero fees, although we hold
custody of funds

• Decentralized Approach: Being the first merchants to
upgrade to segwit addresses for orders

• Accepting altcoins (Not a long term solution, low volume
compared to bitcoin)

• Integrating lightning

Actually Integrating
Lightning

• Originally our backend went
with BTCD + LND

• Why LND?
• Nodejs backend handling

interaction with LND with
GRPC

• Reused much of the work
done to not depend on third-
party bitcoin apis

btcd + lnd
Nodejs server using GRPC

Handling invoice
generation, notifications,

external facing api

Actually Integrating
Lightning

• Application Backend calls out to our bitcoin
backend api server when generating a
lightning order or deposit invoice

• Lightning Invoices: addInvoice Params:
memo, satoshi amount, expiry

• Memo: ‘Bitrefill 5bcfdce8e3a4580004abaf7e’

• Application backend keeps state of orders
being paid, refunded

• Expiration is handled on the lightning end
avoid which is great to avoid payments after
expiration

btcd + lnd
Nodejs server using GRPC

Handling invoice
generation, notifications,

external facing api

Application
Backend

Actually Integrating
Lightning

• SuscribeInvoice on our bitcoin
backend service, send relevant
notifications to our application backend
resend notifications using listinvoices

• Important details I pass to our
application backend web hook
notification endpoint: memo, amount,
settled, amt_paid_sat

• Grab order id from memo, verify
amount paid matches amount set in
application backend

btcd + lnd
Nodejs server using GRPC

Handling invoice
generation, notifications,

external facing api

Application
Backend

Deploying Lightning

• Originally testnet only
• This was before beta and shortly after segwit

activated I had a local version with working
lightning payments in August 2017

• Great for finding bugs with users testing on
Bitrefill

• Experience Bitrefill with a real Merchant with
fake refills

• Mainnet Launch March 15 to the public

Challenges Integrating
Lightning

• Stability
• Bugs
• Money Loss on Testnet
• Wallet Issues out of state (Ghost UTXOs w LND)
• Early tech with bugs expected
• Interoperability issues (channels force closing due to

protocol disagreements, or fees) 150 153? ¯_(ツ)_/¯
• Three Lightning Networks for some time: Eclair

Lightning, c-lightning, lnd lightning
• Little to no liquidity between different node

implementations

Lighting Nodes
• Take of merchants not being routing nodes
• Many devs believe Merchants should have private incoming

channels

• Bitrefill is a routing node
• Merchants online already run 24/7, suited to route at the

moment
• Centralized due to not having nodes freely able to add capacity
• At the will of other nodes raising routing fees to the merchant
• Our view currently, long term it may be better to have private

incoming channels

Liquidity Lightning

• Incoming capacity is not a problem, if anything we have more than enough
incoming capacity

• If a service has demand and usage nodes will open channels and provide
liquidity to earn fees

• Issues offloading funds due to not many if any exchanges supporting
lightning deposits

• Avoid close user funded channels to avoid potential user having a bad
experience, may also be another reason long term why merchants should
avoid

• Have sweeped funds off our node many times in cases of users remotely
closing channels, capacity is always fluctuating up and down

Avoiding Dust UTXO

• Minimum incoming channel 0.01 bitcoin has helped avoid small
channels that could more likely close with small local balances

• Can not actually avoid small utxos

• A Minimum helps limit the amount of channels incoming to Bitrefill
which limits potential utxo count

• This also limits number of peers with better performance due to this

Integrating Lightning
Payments

• Focus on receiving lighting payments, and refunding on-
chain initially

• Stealing funds via routing fees with refunds
• Receiving is easy, sending is hard and very dangerous!

Fee Siphoning Attack

AttackerBitrefill Attacker

Attacker pays for service that fails and requires a refund

200000 satoshi payment from node 1
Each channel is at max capacity, preferably with more

incoming capacity toward the attacker’s node 1

1 2

Fee Siphoning Attack

AttackerBitrefill Attacker

Bitrefill refunds 200000 satoshi payment with
attacker directing it to node 2

Attacker raises routing fee rates and provides the
only liquidity to node 2, node 2 presumably rejects

any other nodes from creating channels to it

1 2

Service must offer automatic refunds or offer sending from
a service without paying routing fees

Fee Siphoning Attack

• You must then repeat this scenario over and over, larger
amounts yield bigger fees

• A well connected node 1 with plenty of incoming funds
increase fund loss potential

• Can use channel opening services to obtain incoming
capacity

Mitigations
• Rate limit refunds to nodes but may cause
problems for those using a shared custodial node

• Fee limits do not solve this issue only limit fund
loss to a slower rate

• Must pass on routing fees to the user, refund x
satoshis less and use that for routing fees

• Before any service/exchange integrate sending
lightning, implement fee limiting

• Help create a best practices for sending lightning
payments

Other Work
• Automatically restarting LND after crashes with
supervisord,

• Migrating to a new node using bitcoind instead of btcd
• Migration strategy liquidity wise moving to anew node
• Automatic wallet unlock using unlockWallet grpc endpoint
• Settled Index, resubmitting notifications the right way
• Moving away from a node running since beta, and having
it as a backup

• Lightning Deposits
• Lightning Withdrawals and other issues sending via
lightning

There’s hope!
• Even with all the issues I have had most of these
issues can be fixed or mitigated

• Many of them have already been fixed or are being
worked on right now

• I’d rather run into these issues myself before others
do at scale

• Lightning will only get better with recent
improvement proposals and maturity of
documentation and new developers being onboard

