
Bootstrapping and Maintaining a
Lightning Node

Elaine Ou
Chaincode Lightning Residency

October 22 2018

Bootstrapping and Maintaining a Lightning Node

• How Routing Works
• Finding Peers
• Getting Incoming Capacity
• Maintaining that Capacity
• Future Work

Route Formation
(In Theory)

Calculating a Route
• Nodes have a local network view
• Source-based, varies by implementation

o Find k-shortest paths that has sufficient channel capacity for
payment, weighted by fees plus time lock penalty

Calculating a Route
• Try paths until one works!

o C->E->F->H
o C->D->F->H
o C->E->G->H

Routing (in practice)
{ "code" : 205, "message" : "Could not find a route", "data" :
{

"getroute_tries": 1,
"sendpay_tries": 0,
"failures": [
]

} }

Confirm payment (yes/no): yes
{

"payment_error": "unable to find a path to destination",
"payment_preimage": "",
"payment_route": null

}

Making Friends
Node discovery and channel formation

BOLT#10: DNS Bootstrap and Assisted Node Location

• It’s hard to be discovered
o Nodes need peers to get started

• DNS seed server indexes nodes and return a random set
for bootstrapping
o %s.lseed.bitcoinstats.com
o https://github.com/cdecker/lseed

• Can search for nodes by node_id if address has changed

BOLT#2: Peer Protocol for Channel Management

• open_channel message
o Funding amount, push amount, max_htlc_value_in_flight,

htlc_minimum, max_accepted_htlcs, channel reserve, feerate,
to_self_delay, dust_limit_satoshis, announce_channel

o Revocation basepoint

BOLT#2: Peer Protocol for Channel Management

BOLT#2: Peer Protocol for Channel Management

BOLT#2: Peer Protocol for Channel Management

• Commitment Transaction
o Revocation_basepoint +

commitment_point =
revocation_pubkey

OP_IF
<revocation_key>

OP_ELSE
`to_self_delay`
OP_CSV
OP_DROP
<local_delayedkey>

OP_ENDIF OP_CHECKSIG

BOLT#2: Peer Protocol for Channel Management

New Commitment
o Previous commitment_secret +

revocation_basepoint_secret =
revocation_privkey

OP_IF
<revocation_key>

OP_ELSE
`to_self_delay`
OP_CSV
OP_DROP
<local_delayedkey>

OP_ENDIF OP_CHECKSIG

BOLT#2: Peer Protocol for Channel Management

OP_IF
<revocation_key>

OP_ELSE
`to_self_delay`
OP_CSV
OP_DROP
<local_delayedkey>

OP_ENDIF OP_CHECKSIG

Finding Good Peers
• Reliability
• Connect to nodes that maximize

connectivity to the network
o High uptime, low fees, good

capacity (balanced channels),
strongly connected

o https://1ml.com/
• Funds are tied up, so choose

wisely

Autopilot (LND)
• Automatically open channels to routing nodes

o Set max channels, fraction of funds to commit

• Connect to nodes randomly, with probability of
connection proportional to number of existing channels
o Power law distribution

• Goal: Global scale-free network
o Many hubs

Additional Considerations
• Channel capacity vs. channel balance
• Reliability/Uptime
• Path diversity and redundancy (if one node disappears,

will there be a connectivity problem?)
• Fewest hops to favorite destinations
• All these factors optimize for outgoing transactions

Incoming Capacity

Why would someone open a channel to you?

• Responsibilities
o A funding transaction forms a smart contract (commitments)
o An unresponsive node causes routing failures, payment delays, lost

transaction fees, or money to be unavailable until the timeout period
• Be a good routing node (chicken-and-egg problem)
• Build a store that people like
• Pay for the channel yourself

o Spend money (create channel and push some of it)
o Exchange on-chain capacity for lightning payments
o Submarine Swaps

Exchange On-chain Bitcoin for Lightning

• Buy Bitcoin on exchange, exchange opens a channel to
your node, pushes funds to you (custodial swap)
o Now you’re connected to a hub
o Eg: Zigzag.io

Non-custodial swaps
• Preimage obtained from paid invoice to claim on-chain

funds
o Generate a hash of the preimage for swap
o Create on-chain commitment transaction containing hash

• Submarineswaps.org
o https://github.com/submarineswaps/swaps-service

• Sparkswap.com

Maintaining Channel
Liquidity

How do we keep things running?

Why Payments Fail
• Can’t find a route
• The payment is too large #reckless

o Some transactions are better on-chain
o Larger transactions shorten channel lifetime, hence higher fees

• Channels have sufficient capacity, but insufficient balance
o Only the two channel endpoints know the balance

• Zombies
o Nodes made public channels, then went offline

• Sender has limited information

BOLT#7: P2P Node and Channel Discovery

• Nodes share gossip to disseminate information about nodes
and channels

• Gossip messages
o channel_announcement: new public channel!

• Confirmed funding transaction, public keys of nodes
o node_announcement: node data (addresses, pubkey, color, alias)

• Node must be associated with known channel
o channel_update: fees, minimum expiries for HTLCs

• Each channel_announcement should have two channel_updates
• Gossip can be queried or rebroadcast on reconnection

Let Nodes Do Their Jobs
• You don’t need to have public channels

o Many Lightning users will be on mobile devices, reliability should
not be expected

Routing Hints
• Invoices support a tagged field with extra routing

information for private routes
o Payer not required to use hints, but add it to pathfinding process

Be a Good Node
• Balance Channels if public

o Negative-fee channels can encourage balance
o Keep an eye on node and channel activity

• Shutdown gracefully
• Punish bad nodes

o Disable inactive channels
o Close offline channels

WIP
Things to look forward to

Atomic Multi-Path Transactions

• High capacity channels are expensive and scarce
• When sending a payment over multiple channels, you'll

be restricted by the size of your the smallest channel
o Split a payment into multiple partial payments
o The receiver is able to claim the total amount only when all

partial payments have been received
• More path options, better privacy

Lots More…
• Splicing

o Resize open channels

• Channel Factories
o Payment channels can be used to create more payment channels
o Funds are locked into a shared wallet between a group of nodes

instead of a specific channel.

More Information, Better Decisions

• Nodes will track more metrics
o Peer Node History

• Past routing successes and failures
• Forced close channels due to inactivity or route

timeout/delays
• Channels closed, opened, turnover frequency

• Active node management
• Different strategies for peer management, pathfinding

January 2018

October 2018

Less of This
{ "code" : 205, "message" : "Could not find a route", "data" :
{

"getroute_tries": 1,
"sendpay_tries": 0,
"failures": [
]

} }

Confirm payment (yes/no): yes
{

"payment_error": "unable to find a path to destination",
"payment_preimage": "",
"payment_route": null

}

More of This

